MESOMORPHIC TRANSITIONS IN PAA

Our para-azoxyanisol sample was purchased from Eastman Kodak company; we did not make any purification before or during its handling, however the transition temperatures were checked after each measurement: in particular, their values were not changed after experiments up to 3 kbar; this indicates that there is no substantial degradation in the corresponding temperature range.

3. Phase Diagram

The effect of pressure on the transition temperatures is shown in Fig. 1; clearly, this is a very large effect: common slopes for the

Figure 1. Variation with pressure of the temperatures of the solid-nematic (dots) and nematic-isotropic (triangles) transitions in T, P. The slopes are roughly coherent with other existing thermodynamic data, if one applies the Clausius-Clapeyron equation (see Table 2). The non linearity above 3 kb is due to thermal degradation of the sample: the points at 4 kb are not significant

199

200 MOLECULAR CRYSTALS AND LIQUID CRYSTALS

stead in the firmer by	TABLE 1	
 Alt anticide intervision pair metter (scheidel anner strang metter (scheidel anner strang metter (scheidel anticide) 	Slope of solid-nematic transition line: $\frac{\mathrm{d}T_M}{\mathrm{d}P}$	Slope of nematic-isotropic transition line: $\frac{dT_{e}}{dP}$
G A TI 1 (1(2)	000/11	
G. A. Hulett ⁽⁷⁾	32°/kbar up to 300 bars	48.6°/kbar up to 300 bars
G. Puschin and		Goo Suis
W. Grebenschtschikov ⁽⁸⁾	$25.6^\circ/{ m kbar}~{ m up}~{ m to}~2~{ m kbar}$	39.4°/kbar up to 1 kbar
J. Robberecht ⁽⁹⁾	32° /kbar up to 850 bars	48°/kbar up to 935 bars
This work	a) 24.5°/kbar up to 3 kbar b) 23.7°/kbar up to 3 kbar ⁽¹⁰⁾	27°/kbar up to 3 kbar 28.7°/kbar up to 3 kbar ⁽¹⁰⁾
	TABLE 2	001
	Relative jump in	Relative jump in
	specific volume at	specific volume at
	melting point	clearing point
	$\left(\frac{\Delta V}{V}\right)_M$	$\left(\frac{\Delta V}{V}\right)_{c}$
W. Maier and A. Saupe ⁽¹⁸⁾		0.30% 0.35% '' extrapoled " value
E. McLaughlin,		
A. Shakespeare and		
R. Ubbelohde ⁽¹¹⁾	11.03%	0.36%
L	atent heat at melting point: $(\Delta H)_M$	Latent heat at clearing point: $(\Delta H)_c$
R. Schenck ⁽¹²⁾		735 joules/mole
C. Kreutzer and W. Kast ⁽¹³⁾		1730 joules/mole
H. Arnold ⁽¹⁴⁾		600 joules/mole
I. G. Chistyakov ⁽¹⁵⁾	29.570 joules/mole	574 joules/mole
E. M. Barral,		
K. S. Porter and	20 200 joulos/mala	725 joulos/mala
J. F. Johnson	50.200 joures/more	155 Joules/mole
D. E. Martire ⁽²⁹⁾		760 joules/mole
This work, from		the observe loss their
Clausius-Clapeyron	a) 35.000 joules/mole	1.080 joules/mole
equation	b) 36.000 joules/mole ⁽¹⁰⁾	1.000 joules/mole(10)